Making HTTPS and Anonymity Networks Slightly More Secure

(Or: How I’m Using My Botball Skill Set in the Privacy/Security Field)

Jeremy Rand
Lead Application Engineer, The Namecoin Project
(Alumni, Norman Advanced Robotics / Team SNARC)
A little bit about me…

• Founder+Leader of Team SNARC (Competed in KIPR Aerial and KIPR Open 2011-2015).
• Alumni of Norman Advanced Robotics (Class of 2011).
• Mentored Alcott and Whittier Middle Schools 2011-2015.
• Presented at GCER on hacking the XBC, CBC, Link, AR.Drone, and Create (2008-2015).
• Interested in the intersection of technology and human rights.
HTTPS: what does it do?

• When you visit an HTTPS website, that means it's supposed to be secure.
• What does “secure” mean?
• It’s encrypted, but that’s not all that happens.
What you expect:

But what if…
This is called a *Man-in-the-Middle (MITM) attack*

- For encryption to be secure, you need to **authenticate** that the website server you’re talking to is actually whom you think it is.

- Standard solution is to introduce **Certificate Authorities (CA’s)**.
Certificate Authorities (CA’s)

- Certificate Authorities are corporations that sign **certificates**, which are sort of like ID cards for authenticating websites.
- If you trust a CA, then you can trust all the websites that they've signed a certificate for.
- Over 1000 CA’s are trusted by your web browser.
Wait a minute, this sounds fragile….

• Yep. Very fragile.

• If any of the 1000+ CA’s that you trust, makes a mistake…
 – They could issue a false certificate to an attacker, that allows them to do a MITM attack.

• But surely, this hasn’t happened, has it?
Yes, it's happened.

- In July 2011, the CA DigiNotar was compromised.
 - Possibly by an Iranian intelligence agency.
 - The attackers got away with fake signatures for impersonating the CIA, MI6, Facebook, Microsoft, Skype, Twitter, WordPress, Mozilla, and hundreds of other targets.
 - DigiNotar didn't even notice for over a month.
More CA Fails…

- The CA WoSign issued a certificate in 2016 for github.com…
 - … to a random guy who only proved that he had an account on GitHub.
Namecoin: like a CA, but no trust required

- Namecoin is very much like Bitcoin.
- But while Bitcoin transactions move money around...
 - Namecoin transactions register and update website addresses.
 - Namecoin website addresses end in .bit
- Namecoin addresses are difficult to impersonate, for the same reasons that bitcoins are difficult to steal.
Namecoin improves HTTPS security

- If you register a Namecoin website address, you can control which HTTPS certificate is allowed for it.
 - No trusting CA’s required.
The Tor Anonymity Network

• HTTPS keeps the **content** of your Internet traffic secret.
• But it doesn’t hide **which websites** you’re visiting.
 – Knowing which websites you visit can reveal a lot of private information about you.
• To solve that, you need Tor.
How Tor makes you anonymous
Tor has a usability problem

- A website address that’s hosted with Tor looks like this:
 - https://idnxcnkne4qt76tg.onion
 - https://odmmeotgcfx65l5hn6ejkaruvai222vs7o7tmtllszqk5xbysola.onion
- Namecoin addresses can point to Tor addresses too.
 - So you won’t have to deal with impossible-to-remember Tor addresses if you use Namecoin.
How is this similar to Botball?

• It’s actually very similar.
Reverse-Engineering in Botball

• The controllers and software provided in Botball don’t necessarily do what you want.
 – It might also be undocumented.

• You might experimentally reverse-engineer things in order to make them do what you want.
 – This was the basic formula for all of the Botball hacking papers I wrote.
Reverse-Engineering in Namecoin

- The HTTPS implementations in web browsers also don’t do what I wanted.
 - And the documentation was minimal.

- I had to reverse-engineer parts of the Windows HTTPS implementation in order to make it work with Namecoin.
 - This felt just like I was back in Botball reverse-engineering the CBC.
Questioning Assumptions about Adversaries in Botball

• A poorly kept secret about Botball D.E.: the most well-built and well-programmed robots don’t always win.

• The most critical skill in Botball D.E. is accurately guessing what other teams will try to do.
 - This can let you block your opponent from scoring.
 - This can also let you score reliably even when your opponent is trying to block you.
Questioning Assumptions about Adversaries in Namecoin

- Questioning assumptions is a huge part of security engineering.

- Example: if you get web browsers to accept Namecoin HTTPS certificates, did you remember to make sure that CA’s can’t issue certificates for Namecoin websites?
 - The former doesn’t imply the latter.

- Example: if you get web browsers to block connections to Namecoin sites with the wrong certificate, did you remember to make sure that the blocking happens before the browser tries to send login data to the website?
 - If not, then a MITM attacker can steal logins.
Minimizing Attack Surface in Botball

● Avoid unnecessary complexity! (AKA the KISS Principle.)

● Security by isolation: use a blocker robot to “isolate” the robot that scores most of your points from the other team’s robots.

● Avoid known past failure modes: keep track of what strategies didn’t work well (for your team or other teams) and avoid them in the future.
Minimizing Attack Surface in Namecoin

• Avoid unnecessary complexity! A lot of our engineering effort is spent on complexity reduction.

• Security by isolation: keep sensitive code/data separated from code that an adversary can interact with.

• Avoid known past failure modes: memory safety bugs are historically very common in C code; replacing C with safer languages like Go and Rust tends to make things more secure.
International Collaboration in Botball

- Botball teams often form alliances.
 - Swapping code.
 - Sharing tips.
 - Sharing intel.
 - Co-writing GCER papers.

- Often Botball teams in different states or different countries will collaborate.
International Collaboration in Namecoin

- Namecoin developer team scattered across countries.
 - Former developers in France and Russia.
- Several developers operate under pseudonyms.
 - Some don’t disclose what country they’re in.
- Development is entirely coordinated online.
- We collaborate with other project teams.
Why you might want to join Namecoin

- Open-source software development experience looks great on a resume or college application.
- Making the world a better place for human rights (e.g. privacy) is good too.
- The blockchain technology used in Bitcoin and Namecoin has a lot of industry attention these days.
Do you know, or want to learn, any of these?

- Python
- C++
- Go
- Java
- Javascript
- PHP
- Qt GUI’s
- PyQt GUI’s
- Usability testing
- Documentation
- Packaging (any OS)
- Browser extensions
- Android apps
- DNS
- TLS
- Bitcoin
- Anonymity
- Sandboxing
- Basic applied cryptography
- Unit / integration testing
- Static analysis

jeremy@namecoin.org https://www.namecoin.org