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This is not a talk by The Tor Project
● Everything in this talk only represents me.
● I’m coming at this from the perspective of a 

Namecoin developer.
● The perspective of the Tor developers may 

differ from mine.  That’s okay!



  

Onion services are cool
● Built-in encryption, authentication, and 

censorship resistance.
– Security doesn’t depend on a trusted third party 

(e.g. certificate authorities).

● But… the UX has a problem.



  

Onion services are cool… 
Except for this

● http://
7fa6xlti5joarlmkuhjaifa47ukgcwz6tfndgax45ocyn4rixm
632jid.onion/ 

● Impossible for humans to remember.
● Impossible for humans to recognize.

– Humans will often not check the entire address.
– Result: phishing attacks.



  

A brief introduction to Namecoin
● Like the DNS, but secured by a blockchain.
● Uses the “.bit” top-level domain.
● Names are represented by special coins.
● First project forked from Bitcoin (in 2011; Bitcoin 

was created in 2009).



  

Namecoin as a naming layer 
for onion services

● Recognized by Namecoin developers as a potential 
use case for Namecoin (very early in Namecoin 
history).

● Provides global, decentralized names (like .onion) but 
also human-meaningful (e.g. federalistpapers.bit).

● Mapping .bit (Namecoin) domains to .onion domains 
would solve the onion services UX issue.



  

Namecoin as a naming layer 
for onion services

● Experimental implementations date back to July 
2011 (NmcSocks by itsnotlupus).

● Experiments continued for years.
● Some discussions happened with Tor 

developers, not much adoption materialized.
● See my 34C3 talk for more background.



  

Signs of renewed Tor interest
● By chance I ran into a Tor Browser developer 

(Arthur Edelstein) on Twitter in October 2018.
– Because I subscribe to an RSS feed of Twitter 

search results for “Namecoin”.



  



  



  

2018 discussions with 
Arthur from Tor

● Previous Tor discussions had focused on 
helping users experiment with installing 
Namecoin into Tor Browser themselves.
– E.g. “Proposal 279” pluggable naming API.

● This time was different.



  



  

Likely criteria (and non-criteria) 
that Arthur identified

● Tor recognized that the non-meaningful names of .onion 
domains were a massive UX and security problem.

● To the point that they were willing to compromise on the 
security model for a fix.

● In particular, anonymity for name owners was not a 
short-term requirement as long as we had a plan to deal 
with it later.



  

The big stickler: 
performance/scalability

● Arthur’s suggested performance goal:
– User launches a fresh Tor Browser install.
– User immediately types a .bit domain into address bar.
– Delay in loading the .bit website shouldn’t be 

noticeably more than what you would expect from 
a .onion website (given random variation in speed of 
building circuits to onion services).



  

Is near-instant 
Namecoin resolution possible?

● My mental reaction: “No way is that happening.”
● What I (approximately) said: “That’s going to be 

really hard, but there are a lot of optimizations we 
could be doing that we aren’t yet.  I’ll do some 
experiments and see what we can manage.”

● General rule: don’t tell people on the spot that 
something is impossible; actually look into it first.



  

Enter Electrum-NMC
● Ahmed Bodiwala and I were being funded by NLnet and 

Cyphrs to port the lightweight Bitcoin wallet Electrum to 
Namecoin.

● The port had only recently become a thing when Arthur 
and I talked.

● Based on talking to Arthur, it became clear that the 
embryonic Electrum-NMC was our best bet at achieving 
the performance needs that Arthur outlined.



  

Diverting funding to Electrum-NMC
● NLnet had allocated funding for us to spend on a different 

lightweight name lookup client, ConsensusJ-Namecoin.
– ConsensusJ-Namecoin’s design was not capable of achieving 

Arthur’s performance goals (~5 minute initial sync).
– We decided to divert the NLnet ConsensusJ-Namecoin funding 

to focus on Electrum-NMC.
– Kudos to NLnet for giving us that flexibility!



  

The state of Electrum-NMC
in October 2018

● Initial syncup downloaded 672 MB.
● Took around 6 minutes on a Talos II workstation 

(very fast CPU) without Tor.
● This was needed before name lookups could be 

performed.
● Nowhere near meeting Arthur’s performance goal.



  

Checkpoints
● Electrum (for Bitcoin) encodes checkpoints as a list 

of every 2016th block hash.
– It only downloads the headers postdating the last 

checkpoint hash on startup.
– If you need to validate a transaction that predates the last 

checkpoint hash, Electrum downloads the chunk of 2016 
headers between the two checkpoints that surround that 
transaction.



  

Checkpoints in Namecoin
● Unexpired names can be anywhere in the last 36 

kiloblocks.
– So if we want to look up names quickly, we need to already have 

the last 36 kiloblocks’ headers.
– So we can’t set a checkpoint more recent than 36 kiloblocks ago.
– Setting a checkpoint 36 kiloblocks ago dropped the syncup 

download usage to 66 MB (compared to 672 MB without a 
checkpoint).



  

On-demand header download
● What if we did set a checkpoint more recent than 

36 kiloblocks?
– Good: Drops the initial syncup download to 4.9 MB.
– Bad: When looking up a name whose header we hadn’t 

downloaded yet, we’d need to download 2016 headers.
– That’s 3.2 MB, downloading during a name lookup.
– Is this improvable?



  

Merged mining and checkpoints
● Namecoin block headers consist of 2 parts:

– Bitcoin-style block header (80 bytes).
– Merged mining header (variable length, often ~10 KB).

● Both parts are needed to verify proof of work.
– If you have some other method to verify that a header is 

valid, you don’t need the merged mining header.
– Guess what!  A checkpoint is such a method.



  

Removing merged mining headers 
from checkpointed headers

● Since a checkpoint can verify a block header without 
needing the merged mining header, we can just not 
download the merged mining header.

● Drops the size of an on-demand chunk (of 2016 
headers) from 3.2 MB to 323 KB.

● This is getting closer to the realm of usability for Tor, 
but can we do better?



  

Merkle Checkpoints
● The Electrum protocol supports a 2nd checkpoint format.

– The client checkpoint is just a Merkle root of all headers prior to the 
checkpoint height.

– The server provides a Merkle branch proof when a header is 
requested.

– You can download a single header at a time and still connect it to the 
checkpoint.

– Merkle branch proofs are logarithmic in size – much better scalability.



  

Merkle Checkpoints for 
Electrum-NMC

● The only client implementation of Merkle 
Checkpoints was Electron-Cash (the BCH fork of 
Electrum).
– I ended up porting that implementation to Electrum for 

Bitcoin.
– And then merged it to Electrum-NMC.
– Dropped from 323 KB to under 2 KB.  Now we’re talking!



  

Parallelized Blockchain Download
● Electrum typically only downloads headers from 

one server at a time.
– I patched it to download from multiple servers in 

parallel.
– Improves initial syncup time considerably.



  

Binary size requirements
● “The Tor Browser download is on the order of 

60-80 MB (after compression). So adding a few 
megabytes is probably acceptable, but 10 
megabytes will probably be too much.”  – Arthur
– Namecoin’s Tor Browser integration consisted of: 

Electrum-NMC, ncdns, ncprop279, TorNS, txtorcon.
– Uh oh.  These components totaled to 39.7 MB.



  

Optimizing binary size: 
Stripping unneeded features

● I stripped the GUI, plugins, payment protocol, 
and wallet code from Electrum-NMC.

● Also stripped a lot of TLS and DNS code from 
our Go codebases (ncdns and dns-prop279).

● All of these features are now optional at build 
time.



  

Optimizing binary size: 
Avoiding redundant static libraries

● Go binaries are statically linked (usually).
● Go runtime is massive; gets statically linked into 

every binary.
● Combining ncdns and dns-prop279 tools into a 

single specialized tool (ncprop279) avoided 
static library redundancy.



  

Optimizing binary size: 
Tor controller library

● We were using the txtorcon library to interact with the Tor control 
port API.
– Because that’s what meejah’s TorNS example code did.
– txtorcon has lots of dependencies.

● Refactored TorNS to use Stem instead of txtorcon (much 
smaller).
– Stem has no additional dependencies, and is generally smaller.

● Kudos to Jesse Victors of OnioNS for some Stem example code.



  

Optimizing binary size: 
Final results?

● Reduced Namecoin’s impact on binary size 
from 39.7 MB to 3.3 MB.
– Still a significant impact, but no longer a horrifying 

dealbreaker.



  

Proposing it to the other Tor devs…
● Once Arthur’s performance goals were met, we 

scheduled a demo for several other Tor 
developers, 2019 Apr 26.
– Including Georg Koppen (lead Tor Browser 

developer).
– The response was cautious but optimistic.



  

Tor’s review culture is excellent
● At one point I was asked: “Assuming you'd have 

to argue against including Namecoin support in 
Tor Browser, which arguments would you bring 
up?”
– More FLOSS projects should be asking this 

question to new contributors making proposals.



  

Limiting the scope
● Everyone agreed that this is an experiment, and 

therefore the scope should be extremely narrow.
– No resolution to IP addresses (only onion services).
– No TLS validation.
– In Nightly builds only.
– In GNU/Linux only.
– Disabled by default.



  

Why limit the scope?
● This limits the risk to users, and facilitates 

quicker review.
● If the experiment goes well, we can always 

expand the scope later.
● No commitment from Tor to keep the code there 

or to advance the experiment.



  

Stream isolation
● Anonymity for name owners wasn’t a requirement.

– But anonymity for people viewing websites definitely is.
– A critical Tor feature is stream isolation – isolates traffic 

from different activities on different Tor circuits.
– Makes users anonymous rather than pseudonymous.



  

Stream isolation in Namecoin
● All of Namecoin’s Tor integration components, and 

many of their libraries, needed patching to properly 
handle stream isolation.
– Side benefit: stream isolation + parallelized blockchain 

download == downloading headers over multiple Tor 
circuits (no more speed bottlenecks from a bad Tor circuit).

– The tor daemon and Firefox also needed patches to ensure 
stream isolation worked with Namecoin.



  

What remained...
● Code cleanup.
● In-person meeting with Tor devs in Stockholm, 2019 July 11-15.
● Reproducible builds (and integration in Tor Browser’s build system).
● Handed off to the Tor devs for review 2019 Nov 11.
● After lots of review cycles (and me addressing each piece of 

review), finally merged on 2019 Dec 18.
● First Tor Browser Nightly to support Namecoin was 2019 Dec 20.



  

Want to try it out?
● Download a Tor Browser Nightly for GNU/Linux.
● Run it with the environment variable 

TOR_ENABLE_NAMECOIN=1
● Namecoin will then be used to resolve .bit 

and .bit.onion addresses.
– Currently both suffixes are equivalent; in the future, .bit 

might also resolve to IP addresses with TLS.



  

Example domains to try
● http://federalistpapers.bit/ 
● http://onionshare.bit/ 
● http://riseuptools.bit/ 
● http://submit.theintercept.bit/ 
● http://submit.wikileaks.bit/ 
● (All of these are owned by Namecoin supporters who are 

happy to donate them to the “rightful” owners.)



  

So what’s next?  (1)
● Support Windows and macOS.

– Will require some refactors, due to GNU/Linux-specific 
assumptions in the Namecoin Tor Browser integration.

– Building Python for Windows reproducibly will be an 
interesting adventure.

● Support Android/Linux.
– Lots of uncharted waters here.



  

So what’s next?  (2)
● More latency / bandwidth / size improvements.

– Cut name lookup round trips from 2 to 1 via API changes.
– Cut bandwidth in half via CBOR encoding instead of JSON.
– Cut binary size by merging Namecoin’s Go binary with the pluggable 

transport binaries (via Go-Busybox from u-root project).

● Electrum-NMC GUI improvements for name owners.
– User selects “Tor” and enters their .onion domain.
– No need to construct JSON manually.



  

So what’s next?  (3)
● Anonymity for name owners.

– Via integration with Monero and Bisq.
– See my 34C3 talk.

● Support IP addresses (not just onion services) and 
TLS.

● Support Whonix and Tails (currently broken due to 
control port filtering).



  

So what’s next?  (4)
● Improve blockchain validation.

– Verify ECDSA signatures for names (not just PoW 
signatures).

– Support authenticated nonexistence proofs.
– Maybe find a way to use actual full nodes with Tor 

Browser?
● Not entirely out of the question.



  

So what’s next?  (5)
● And of course… listening to feedback from the Tor 

community.
– Not clear yet what Tor’s criteria would be for advancing from 

Nightly to Alpha or Stable, or enabling by default.
– Tor devs may want things not on this list.
– Tor devs may not want things that are on this list.
– It’s Tor Browser, not Namecoin Browser – the Tor devs get the 

final say.  We’ll honor their requests.



  

Workshop coming up!
● Come try it out for yourself!

– Bring a GNU/Linux machine (VM or bare metal are both fine).

● Please tell me what you think.
– It’s an experiment – any good experiment needs feedback.

● Right after this talk, in the Critical Decentralization 
Cluster Workshop Area.



  

Huge thanks to our funders

● NLnet Foundation’s Internet Hardening Fund
● Netherlands Ministry of Economic Affairs 

(via Internet Hardening Fund)
● Cyphrs



  

Contact Me At...
● https://www.namecoin.org/ 
● OpenPGP (after Congress ends): 

5174 0B7C 732D 572A 3140 4010 6605 55E1 F8F7 BF85

● jeremyrand@airmail.cc (after Congress ends)

● byronlelah@airmail.cc (during Congress; no OpenPGP)

● Or just find me here at the Congress!  (The Namecoin logo on 
my shirt should help you find me.)
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